

Product Specification For LCD Module

Model NO.: CNKT0800-19306A2

CUSTOMERITEM NO.:

REVISION: A

□ APPROVAL FOR SPECIFICATIONS ONLY

APPROVAL FOR SPECIFICATIONS AND SAMPLE

CUSTOMER: APPROVED BY:

CNK LCM R&D CENTER					
APPROVED BY	CHECKED BY	PREPARED BY			
432	最长的				
DIRECTOR	MANAGER	Engineer			

深圳市希恩凯电子有限公司

SHEN ZHEN CNK ELECTRONICS CO., LTD

地 址: 惠州市惠阳区西湖村铭仕工业园 2 栋 1-2 楼

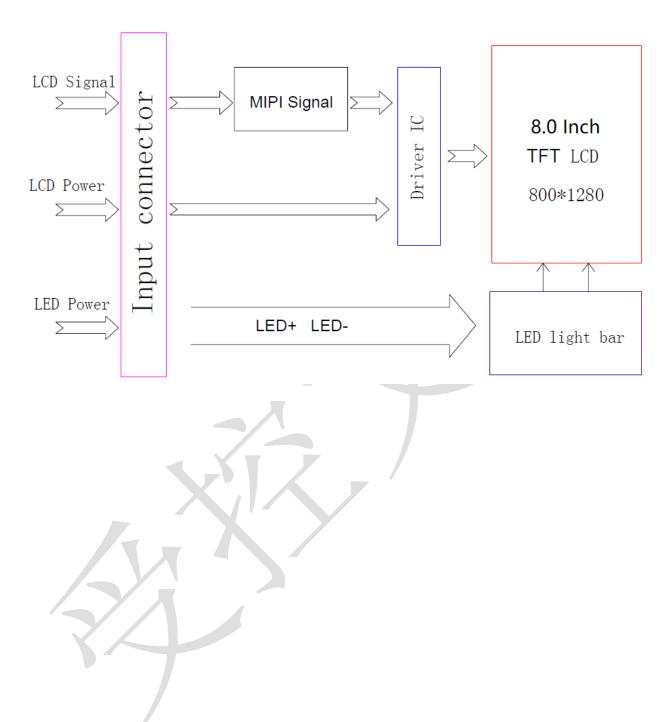
电话: 0752-3556001 传真: 0752-3556004

http://www.szcnk.com

ITEM	CONTENTS
1	VERSION HISTORY
2	GENERAL INFORMATION
3	BIOCK DIAGRAM
4	OPERATION SPECIFTCATIONS
5	BACKLIGHT CHARACTERISTICS
6	EXTERNAL DIMENSIONS
7	INTERFACE SIGNALS
8	SIGNAL TIMING CHARACTERISTICS
9	ELECTRO-OPTICAL CHARACTERISTICS
10	RELIABILITY TEST
11	QUALITY LEVEL
12	Package drawing
/17	
$/\gamma_{\pi}$	
7//	

1[™] VERSION HISTORY

SAMPLE VERSION	DATE	DESCRIPTION	REVISED BY
A00	2018-12-27	FIRST DEVELOPED	Wenlu Liao
A01	2019-03-06	Update PIN Definition (MIPI Signal) Description Section on Page 7 of Specification	Wenlu Liao
		X	
	4 XI		
1	A A		
	X ·		
7/			



GENERAL INFORMATION

Item	Contents	Unit
LCD Size	8.0	inch
Driver element	a-Si TFT active matrix	
Viewing direction	Normally black	
Module size	114.60(W)*184.10(H)*2.5(T)mm	mm
Panel Active Area	107.64(W)*172.22(H)	mm
Number of Dots	800*RGB*1280	pixel
Driver IC	ILI8881C	
Colors	16.7M	
Surface Treatment	Glare	
Interface	MIPI (4 Lane)	
Brightness	350cd/m²(typ)	
NTSC	55%(typ)	
Backlight power consumption	1.37W(typ)	W
Panel power consumption	TBD	W
Weight	TBD	g
Backlight Type	LED	-
Operating Temperature	-10℃50℃	$^{\circ}$
Storage Temperature	-20℃60℃	$^{\circ}\!$

3™BIOCK DIAGRAM

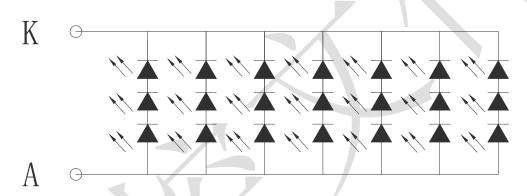
4 OPERATION SPECIFTCATIONS

4.1 ABSOLUTE MAXIMUM RATINGS

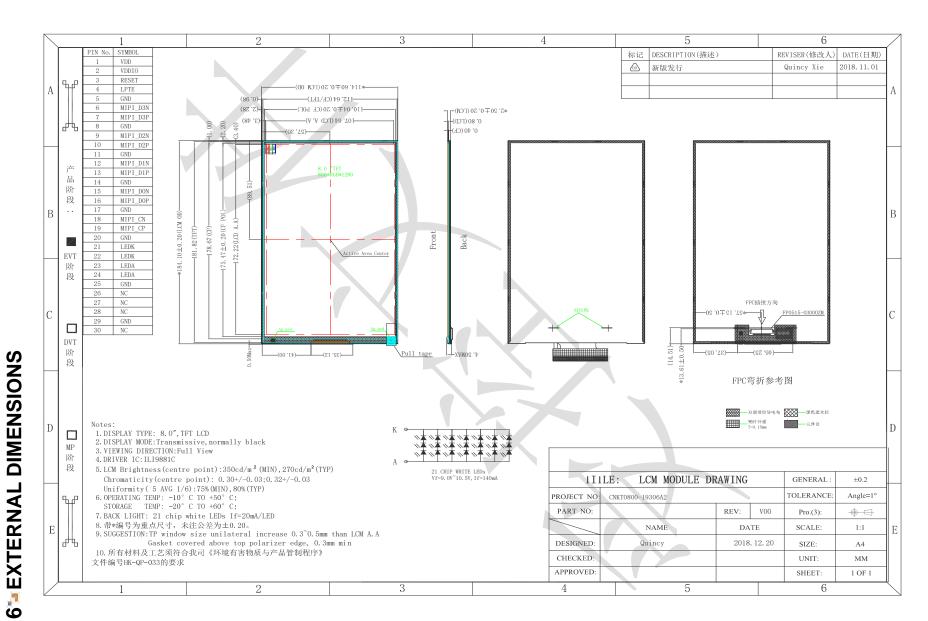
Parameter	Symbol Val		lues	Unit
Parameter	Syllibol	Min.	Max.	Offic
Power Voltage	VDD	-0.5 4.8		V
	VDDIO	-0.5	3.3	V
Input Signal Voltage	Vı	-0.3	VDD	V
Backlight forward current	ILED	0	21	mA(For each LED)
Operating temperature	TOP	-10	50	°C
Storage temperature	TST	-20 60		$^{\circ}$
Humidity	RH	-	90%(Max50℃)	RH

Note: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

4.2 Typical Operation Conditions


Donomoton	Charles		11		
Parameter	Symbol	Min	Тур	Max	Unit
Power Voltage	VDD	3.0	3.3	3.6	V
	VDDIO	1.65	1.8	1.9	V
	IVDD	,	-	-	mA
Current Consumption	Ivddio	-	-	-	mA
	lвL	-	140		mA
Dower Consumption	PLCD	-	TBD	-	W
Power Consumption	P _{BL}	-	1.37	-	W

Note :Frame Rate=60Hz,VDD=3.3V,DC Current; Operating at 25 ℃ at white pattern.


5 BACKLIGHT CHARACTERISTICS

Item	Symbol	Min	Тур	Max	Unit	Condition
Forward voltage	Vf	9	9.75	10.5	V	If 440 = A
Luminance	LV	220	270	-	cd/m²	lf=140mA
Number of LED	-		21			-
Connection mode	р	Sei	Series and parallel			-

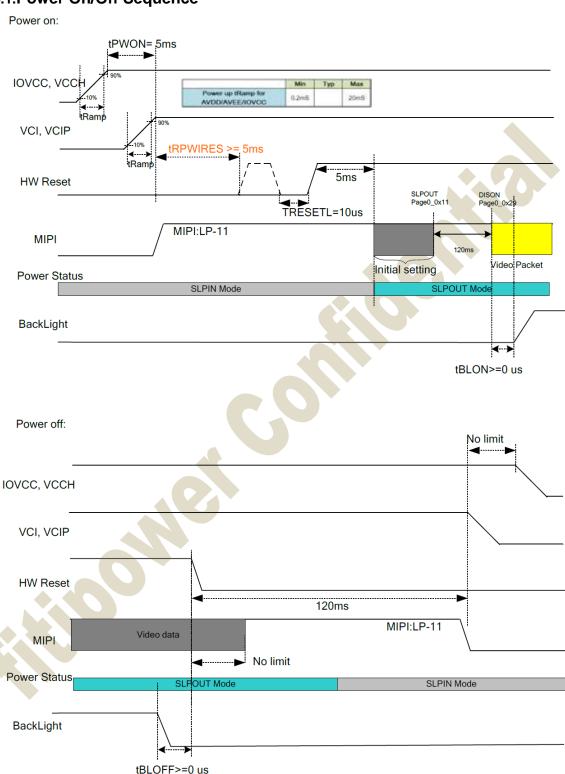
21 CHIP WHITE LEDs Vf=9.0V~10.5V, If=140mA

子有腮 SHENZHEN CNK ELECTRONIC CO 颐 派二二条

7 Interface Signal

Pin No.	Symbol	Description			
1	VDD	Power supply(3.3V)			
2	VDDIO	Power supply(1.8V)			
3	RESET	Reset pin(typ 1.8V)			
4	LPTE	Tearing Effect pin of each scan line.			
5	GND	Power ground			
6	MIPI_3N	MIPI data pair 3 negative signal			
S 7	MIPI_3P	MIPI data pair 3 positive signal			
8	GND	Power ground			
9	MIPI_2N	MIPI data pair 2 negative signal			
10	MIPI_2P	MIPI data pair 2 positive signal			
11	GND	Power ground			
12	MIPI_1N	MIPI data pair 1 negative signal			
13	MIPI_1P	MIPI data pair 1 positive signal			
14	GND	Power ground			
15	MIPI_ON	MIPI data pair 0 negative signal			
16	MIPI_0P	MIPI data pair 0 positive signal			
17	GND	Power ground			
18	MIPI_CLKN	MIPI CLK negative signal			
19	MIPI_CLKP	MIPI CLK positive signal			

>>> 深圳市希恩凯电子有限公司


SHENZHEN CNK ELECTRONIC CO.,LTD.

20	GND	Power ground
21	LEDK	LED Cathode
22	LEDK	LED Cathode
23	LEDA	LED Anode
24	LEDA	LED Anode
25	GND	Power ground
26	NC	Not connect
27	NC	Not connect
28	NC	Not connect
29	GND	Power ground
30	NC	Not connect

Connector: FP0515-03000ZM Or equivalent

8 SIGNAL TIMING CHARACTERISTICS

8.1.Power On/Off Sequence

Note:IOVCC=VDDIO.Power supply 1.8V.

8.2 MIPI Interface Timing Sequence

1) MIPI interface DC characteristic :

	Item		Min.	Тур.	Max.	Unit
	Thevenin output high level		1.1	1.2	1.3	V
LP_TW	Thevenin output low level	VOL	-50		50	mV
	Output impedance of LP transmitter	ZOLP	110	_	_	Ω
	Common-mode voltage HS receive mode	VCMRX(DC)	70	_	330	mV
	Differential input high threshold	VIDTH	_	_	70	mV
	Differential input low threshold HS_RX Single-ended input high voltage Single-ended input low voltage		-70	_	_	mV
HS_RX			_	_	460	mV
			-40	_	_	mV
	Single-ended threshold for HS termination enable		_	_	450	mV
Differential input impedance		ZID	80	100	125	Ω
	Logic 1 input voltage	VIH	880	_	1350	mV
LP_RX	Logic 0 input voltage. not in ULPState	VIL	0	_	550	mV
	Input hysteresis	VHYST	25	_	_	mV
LP_CD	Logic 1 contention threshold	VIHCD	450	_	1350	mV
LF_CD	Logic 1 contention threshold	VILCD	0	_	200	mV

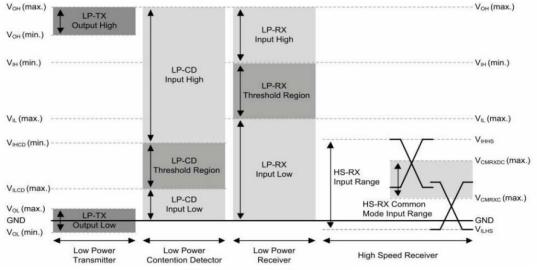


Figure 1. MIPI DC Diagram

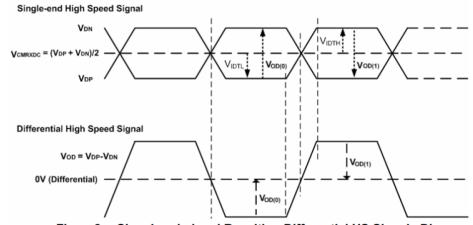


Figure 2. Signal-ended and Resulting Differential HS Signals Diagram

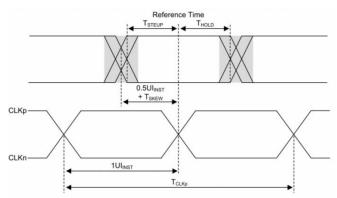
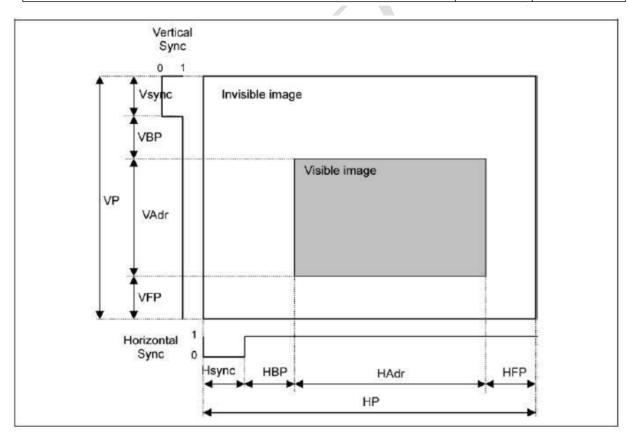
深圳市希恩凯电子有限公司 K SHENZHEN CNK ELECTRONIC CO.,LTD.

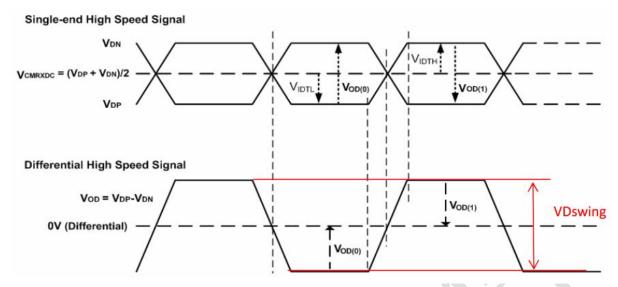
2) MIPI data to clock timing definitions

Clock Parameter	Symbol	Min	Тур.	Max.	Unit
UI instantaneous	UI INST	2	_	12.5	ns
Data to Clock Setup Time[Receiver]	T SETUP[RX]	0.15	_	_	UI INST
Clock to Data Hold Time[Receiver]	T HOLD[RX]	0.15	_	_	UI INST
Data to Clock Skew (Measured at transmitter)	T SKEW[TX]	-0.15	_	0.15	_

[Note]

- *1) This max value corresponds to a minimum 80 Mbps data rate per lane
- *2) The minimum UI shall not be violated for any single bit period, i.e., any DDR half cyclewithin a data burst.
- *3) Total silicon and package delay budget of 0.3 UIINST
- *4) Total setup and hold window for receiver of 0.3* UIINST
- *5) T SETUP[Rx] and T HOLD[RX] are only for RX without FPCB and connector and guaranteed by design.


Figure3. MIPI data to clock timing definitions

深圳市希恩凯电子有限公司 SHENZHEN CNK ELECTRONIC CO.,LTD. 8.3 Timing Chart

	ITEM SYNBOL				UNIT
LCD		Frame Rate -		(60)	Hz
	DCLK	Frequency	fCLK	(68.43)	MHz
	DCLK	Period	Tclk	(14.61)	ns
		Horizontal total time	tHP	(880)	t _{CLK}
		Horizontal Active time	tHadr	(800)	t _{CLK}
	Horizontal	Horizontal Pulse Width	tHsync	(5)	t _{CLK}
		Horizontal Back Porch	tHBP	(59)	t _{CLK}
Timing		Horizontal Front Porch	tHFP	(16)	t _{CLK}
		Vertical total time	tvp	(1296)	t _H
		Vertical Active time	tVadr	(1280)	t _H
	Vertical	Vertical Pulse Width	tVsync	(5)	t _H
		Vertical Back Porch	tVBP	(3)	t _H
		Vertical Front Porch	tVFP	(8)	t _H
Differential Swing VDswing		VDswing	(250)	mV	
Bit Rate TX SPD(M		TX SPD(MBPS)	(450)	Mbps	
	Pixel Fomat			(888)	Data bit/pixel
	Lane			4	Lane

深圳市希恩凯电子有限公司 K SHENZHEN CNK ELECTRONIC CO.,LTD.

深圳市希恩凯电子有限公司 SHENZHEN CNK ELECTRONIC CO.,LTD.

8.4 Reset Input Timing

Symbol	Parameter	Pad	Min.	Typ.	Max.	Unit	Note	
tRESW	Reset low pulse width	RESX	10			us		
tREST	Reset completion time	RESX			5		Reset during Sleep In mode	
		RESX			120(5)	ms	Reset during Sleep Out mode	

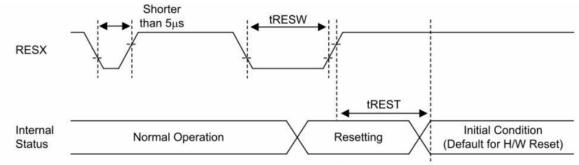
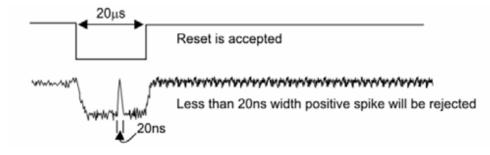


Figure4. Reset Input Timing

Note]


*1) Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

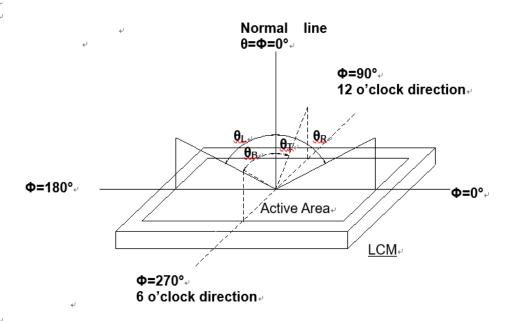
RESX Pulse	Action		
Shorter than 5us	Reset Rejected		
Longer than 10us	Reset		
Between 5us and 10us	Reset Start		

- *2) During the reset period, the display will be blanked. (The display is entering blanking sequence, for which the maximum time is 120ms, when Reset starts is sleep out-mode. The display remains in the blank state is Sleep In-mode) and then return to default condition for H/W reset.
- *3) During Reset Completion Time, ID bytes (or similar) value in MTP block will be latched to the the rnal register during this period. This loading is done every time when there is H/W reset complete

time (tREST) within 5ms after a rising edge of RESX.

*4) Spike Rejection also applies during a valid reset pulse as shown below:

*5) It is necessary to wait for 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

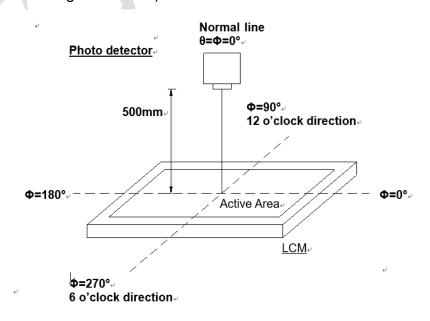

9 ELECTRO-OPTICAL CHARACTERISTICS

Item		Symbol	Condition	Min	Тур	Max	Unit	Remark
Response time		Tr+Tf		-	25	30	ms	Note 2 Note 3
Contrast ratio		Cr	θ=0° □ Ta=25 °C	600	800	-	-	Note 2 Note 4
Luminance uniformity		δ WHITE		75	80		%	Note 2 Note 6
Surface Lumina	Surface Luminance			220	270	-	cd/m²	Note 2
Viewing angle range			□ =90°	-	85	-	deg	Note1
		θ	□ =270° □ =0° □ =180°	-	85	- /	deg	
		ŭ		-	85	-	deg	
				-	85	-	deg	
	Red	х		-	-	-		Note 2 Note 5
	Neu	у	θ=0° Ta=25 ℃	-	1	-		
	Green	x		-	-	-		
CIE(x,y) chromaticity	Gleen	у		-	-	-		
	Blue	x		7	-	-		
		у		-	-	-		
	White	x		0.27	0.30	0.33		
	vviiite	у		0.29	0.32	0.35		

深圳市希恩凯电子有限公司 K SHENZHEN CNK ELECTRONIC CO.,LTD.

Note 1: Definition of viewing angle range

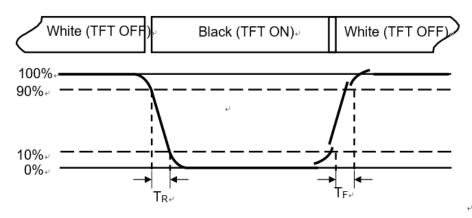
Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface


Definition of viewing angle-

Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Viewing angle is measured by ELDIM-EZ

contrast/Height :1.2mm ,Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/


Field of view: 1° /Height: 500mm.)

深圳市希恩凯电子有限公司 SHENZHEN CNK ELECTRONIC CO.,LTD.

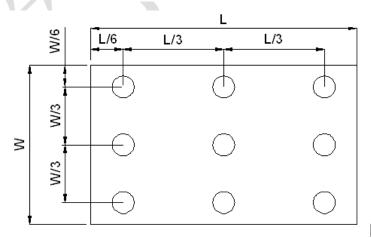
Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_R) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_F) is the time between photo detector output intensity changed from 10% to 90%.

Definition of response time-

Note 4: Definition of contrast ratio

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCDon the "White" state}}{\text{Luminance measured when LCDon the "Black" state}}$


Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity ("White" state)

Active area is divided into 9 measuring areas. Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (Yu) =
$$\frac{B_{min}}{B_{max}}$$

Definition of measuring points-

B_{max}: The measured maximum luminance of all measurement position.

B_{min}: The measured minimum luminance of all measurement position.

10™RELIABILITY TEST

Reliability test conditions (Polarizer characteristics null)

No.	Test Items	Test Condition	Remarks	
1	High Temperature Storage	T = 60°C for 96hr		
2	Low Temperature Storage	T = -20°C for 96hr	Module	
3	High Temperature Operating	T = 50°C for 96hr		
4	Low Temperature Operating	T = -10°C for 96hr (But no condensation of dew)	(Without Contamination)	
5	High Temp. and High Humidity Operating	T = 50°C /90% for 96hr (But no condensation dew)	X	
6	Thermal Shock	-10±2°C~25~50±2°C×10cycles (30min.) (5min.) (30min.)		
7	Packing Shock	1corner, 3edge, 6face / 76cmDrop		
8	Packing Vibration	Random 1.06Grms XYZ 30min for each direction	Packing	
9	Electrostatic Discharge	Contact: ±4KV Air: ±8KV 150PF/330Ω,5Points/panel,5times	Class B.Note1	

- ※ 1) No.1~ No.6: No guarantee for panel, only for module with the above test conditions.
- ※2) No.7~ No.8: Refer to 7-1) Packing Ass'y on page 14.

Note1

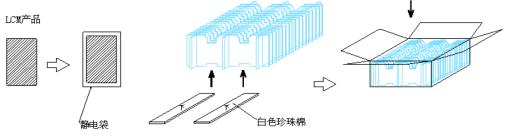
Class	Performance
A	All functions perform as designed during and after exposure to interference
В	Temporary degradation or less of performance which is self-recoverable
С	Degradation or less of performance which requires operator intervention or system reset
C	to recover
D	Degradation or less of function which is not recoverable

Result Evaluation Criteria

TFT- LCD Panel should be at room temperature for 2 hours when the display quality test is over. There should be no particular change which might affect the practical display function and the display quality test should be conducted under normal operating condition.

TBD

12 Package Drawing


LCM 产品(刀卡类)包装流程图

LCM Product(Card Type) Packing Flow Diagram

1.0 包装材料清单请参考 LCM BOM;

Packing BOM: Please Reference the LCM BOM

2.0 包装方法 (Packing Procedure)

第一步

将产品装入静电袋

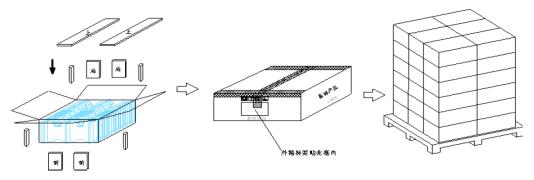
First step

Putting every piece of LCM into anti-static bag.

第二步

把长卡、短卡组成卡阵(短卡朝向一致) 形状和数量按照 BOM 实际物料,卡阵底 部放对应的白色珍珠棉后装箱

Second step


Assemble a carton matrix with the right white EPE down below ,then place them into the carton.

第三步

每个卡槽内放两片产品, 2片产品显示面相对, 中间粉色珍珠棉一起

Third step

Put a pink EPE between 2 pcs products(face to face) while insert all of them into the carton matrix.

第四步

装箱后,按照 BOM 实际物料在 纸箱内侧与卡阵避空位置放白色 泡棉;

Fourth step

Insert all other white EPE into the right place of the carton matrix.

第五步

用胶带封箱,贴外箱标签

Fifth step

seal the carton with cellulose tape;

Stick on a carton label,

第六步

将箱子整齐的放在栈板 上并包裹,最高可堆叠 6层;

Sixth step

Place the boxes together on a pallet (6 layers at most),